Новости сколько неспаренных электронов у алюминия

1) невозбужденном состоянии 1s2 2s2 2p6 3s2 3p1 6 спаренных и 1 неспаренный 2) а в возбужденном состоянии 1s2 2s2 2p6 3s1 3p2 5 спаренных и 3 неспаренных.

Электроотрицательность. Степень окисления и валентность химических элементов

При этом, у атома алюминия нет неспаренных электронов на внешнем уровне. Это означает, что атом алюминия может образовывать три связи с другими атомами, чтобы заполнить свой внешний энергетический уровень и достичь более стабильной конфигурации. Таким образом, свойства алюминия и его способность образовывать соединения в значительной степени определяются его электронной конфигурацией на внешнем энергетическом уровне. Сколько их играется в химических реакциях? В химических реакциях неспаренные электроны на внешнем уровне играют важную роль. Они позволяют атомам образовывать связи друг с другом и образовывать структуры различных молекул. Количество неспаренных электронов на внешнем уровне зависит от места атома в периодической системе. Например, атомы из группы 1 например, литий, натрий имеют один неспаренный электрон. Атомы из группы 2 например, бериллий, магний имеют два неспаренных электрона. Неспаренные электроны могут участвовать в различных реакциях: образовывать новые связи, разрывать существующие связи, создавать заряды и т.

Отличие - в первых двух реакция - из двух простых веществ образуется одно сложное, а в остальные третья и четвертая реакции..

Irazamok 28 апр. Dashaaaa12 28 апр. Julia2104 28 апр. Mamat15 28 апр. Stasyan991 28 апр. Simbioznik51 28 апр. У алканов с увеличением относительной молекулярной массы температура плавления и кипения увеличивается.

Azaromeo 6 окт. У какого елемента на 4 електрона больше чем у алюминия. Вы зашли на страницу вопроса Сколько спаренных и неспаренных електроннов в алюминию?

По уровню сложности вопрос соответствует учебной программе для учащихся 5 - 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке. Последние ответы Frostywhite 28 апр.

Валентность - это способность атома образовывать химические связи с другими атомами Она определяется числом неспаренных электронов на внешнем энергетическом уровне. И для алюминия это число всегда равно трем. Постоянная валентность Al равна III Как видно из электронной формулы, на внешнем уровне алюминия 3 неспаренных электрона на рисунке отмечены точками. Значит, его валентность равна трем.

Это важная особенность алюминия - его валентность во всех соединениях постоянна и не меняется. В отличие от многих других элементов. Поэтому в химических формулах алюминий обозначается AlIII. Цифра III и есть валентность. А если посчитать отношение атомов Al к атомам других элементов, то тоже получится три.

Атомы алюминия: число неспаренных электронов в основном состоянии

Алюми́ний — химический элемент 13-й группы (по устаревшей классификации — главной подгруппы третьей группы, IIIA). Это неспаренный электрон, свободная пара электронов и еще два электрона на связи с кислородом – всего пять. это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными.

ЕГЭ ПО ХИМИИ. ЗАДАНИЕ № 1. СТРОЕНИЕ АТОМА

Неспаренные электроны атома алюминия. Для определения количества неспаренных электронов в атоме алюминия, следует рассмотреть электронную конфигурацию. В результате образуются три неспаренных (валентных или свободных) электрона, которые с радостью готовы соединиться с каким-нибудь подходящим атомом. Поэтому у алюминия постоянная степень окисления +3 (условный заряд атома в соединении). один неспаренный электрон на Р-орбитали. (в обычном состоянии). В возбужденном - 3 неспаренных электрона. Чтобы посчитать число неспаренных электронов, нужно построить графическую формулу. Решение Азот и сера – неметаллы, они образуют устойчивые анионы (которым соответствует конфигурация ближайшего инертного газа).

Сколько неспаренных электронов в основном состоянии у атома Al?

Количество неспаренных электронов на внешнем уровне в атомах Al Количество электронов в атоме алюминия равно количеству протонов, что делает его электрически нейтральным.
Строение атома алюминия Внешний уровень алюминия. Сколько электронов у алюминия.
сколько спаренных и неспаренных електроннов в алюминию??? Чтобы посчитать число неспаренных электронов, нужно построить графическую формулу. Решение Азот и сера – неметаллы, они образуют устойчивые анионы (которым соответствует конфигурация ближайшего инертного газа).
Валентные возможности атомов Таким образом, общее количество неспаренных электронов в основном состоянии атома алюминия составляет 1.
Сколько неспаренных электронов в основном состоянии у атомов группы Ал? У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон.

Число неспаренных электронов атома al

Сколько неспаренных электронов у алюминия в основном состоянии? Число ковалентных связей, образованных атомом, зависит прежде всего от количества неспаренных электронов, которое может различаться в основном и возбуждённом состояниях. Таким образом, на внешнем энергетическом уровне 1 неспаренный электрон имеют атомы водорода и алюминия.

Атомы и электроны

Напомним, что в атомах меди происходит «проскок» переход одного электрона с 4s-подуровня на 3d-подуровень, что объясняется большой устойчивостью образующейся при этом электронной конфигурации 3d10. В соответствии с приведенными формулами определяем внешний энергетический уровень и количество электронов на нем для каждого элемента: 1 Cu — четвёртый уровень — 1 электрон; 2 Mg — третий уровень — 2 электрона; 3 Cl — третий уровень — 7 электронов; 4 Al — третий уровень — 3 электрона; 5 Li — второй уровень — 1 электрон. Таким образом, на внешнем энергетическом уровне 1 электрон имеют атомы меди и лития.

Менделеева, следовательно, электронная конфигурация его внешнего слоя будет 6s 2. На внешнем 6s-подуровне, состоящем из одной s-орбитали, атома бария расположено 2 спаренных электрона с противоположными спинами полное заполнение подуровня. Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, и электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 : на 3s-подуровне состоит из одной s-орбитали расположено 2 спаренных электрона с противоположными спинами полное заполнение , а на 3p-подуровне — один неспаренный электрон. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1. Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 : на 2s-подуровне расположено 2 спаренных электрона с противоположными спинами, а на 2p-подуровне, состоящего из трех p-орбиталей px, py, pz — три неспаренных электрона, каждый из которых находится на каждой орбитали.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 : на 3s-подуровне расположено 2 спаренных электрона с противоположными спинами, а на 3p-подуровне, состоящего из трех p-орбиталей px, py, pz — 5 электронов: 2 пары спаренных электронов на орбиталях px, py и один неспаренный — на орбитали pz. Таким образом, у хлора в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1. Кальций — элемент главной подгруппы второй группы и четвертого периода Периодической системы Д. Электронная конфигурация его внешнего слоя схожа с электронной конфигурацией атома бария. На внешнем 4s-подуровне, состоящем из одной s-орбитали, атома кальция расположено 2 спаренных электрона с противоположными спинами полное заполнение подуровня. Определите, у атомов каких их указанных в ряду элементов все валентные электроны расположены на 4s-энергетическом подуровне. Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д.

Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , то есть валентные электроны хлора расположены на 3s- и 3p-подуровнях 3-ий период. Калий — элемент главной подгруппы первой группы и четвертого периода Периодической системы, и электронная конфигурация внешнего слоя атома калия — 4s 1 , то есть единственный валентный электрон атома калия расположен на 4s-подуровне 4-ый период. Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы, электронная конфигурация внешнего слоя атома брома — 4s 2 4p 5 , то есть валентные электроны атома брома расположены на 4s- и 4p-подуровнях 4-ый период. Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома фтора — 2s 2 2p 5 , то есть валентные электроны атома фтора расположены на 2s- и 2p-подуровнях. Однако, ввиду высокой электроотрицательности фтора только единственный электрон, расположенный на 2p-подуровне, участвует в образовании химической связи. Кальций — элемент главной подгруппы второй группы и четверного периода Периодической системы Д. Менделеева, электронная конфигурация его внешнего слоя — 4s 2 , то есть валентные электроны расположены на 4s-подуровне 4-ый период.

Определите, у атомов каких их указанных в ряду элементов валентные электроны расположены на третьем энергетическом уровне. Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , то есть валентные электроны хлора расположены на третьем энергетическом уровне 3-ий период. Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 , то есть валентные электроны азота расположены на втором энергетическом уровне 2-ой период. Углерод — элемент главной подгруппы четвертой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 , то есть валентные электроны атома углерода расположены на втором энергетическом уровне 2-ой период. Бериллий — элемент главной подгруппы второй группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома бериллия — 2s 2 , то есть валентные электроны атома бериллия расположены на втором энергетическом уровне 2-ой период. Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. Менделеева, электронная конфигурация его внешнего слоя — 3s 2 3p 3 , то есть валентные электроны атома фосфора расположены на третьем энергетическом уровне 3-ий период.

Определите, у атомов каких их указанных в ряду элементов на d-подуровнях электронов нет. Менделеева, электронная конфигурация атома хлора — 1s 2 2s 2 2p 6 3s 2 3p 5 , то есть d-подуровня у атома хлора не существует. Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. Менделеева, электронная конфигурация атома фтора — 1s 2 2s 2 2p 5 , то есть d-подуровня у атома фтора также не существует. Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы Д. Менделеева, электронная конфигурация атома брома — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 , то есть у атома брома существует полностью заполненный 3d-подуровень. Медь — элемент побочной подгруппы первой группы и четвертого периода Периодической системы, электронная конфигурация атома меди — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 , то есть у атома меди существует полностью заполненный 3d-подуровень.

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. Менделеева, электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 , то есть у атома железа существует незаполненный 3d-подуровень. Определите, атомы каких из указанных в ряду элементов относятся к s-элементам. Гелий — элемент главной подгруппы второй группы и первого периода Периодической системы Д. Менделеева, электронная конфигурация атома гелия — 1s 2 , то есть валентные электроны атома гелия расположены только на 1s-подуровне, следовательно, гелий можно отнести к s-элементам. Менделеева, электронная конфигурация внешнего слоя атома фосфора — 3s 2 3p 3 , следовательно, фосфор относится к p-элементам. Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 , следовательно, алюминий относится к p-элементам.

Менделеева, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 , следовательно, хлор относится к p-элементам. Литий — элемент главной подгруппы первой группы и второго периода Периодической системы Д. Менделеева, электронная конфигурация внешнего слоя атома лития — 2s 1 , следовательно, литий относится к s-элементам. Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 np 2. Бор — элемент главной подгруппы третьей группы и второго периода Периодической системы Д.

В связи с этим возникает вопрос о его валентности. Валентность - это число химических связей, которые атом может образовать с другими атомами. Обычно она определяется по числу электронов на внешнем энергетическом уровне, который называется валентным. В случае алюминия это уровень 3p. Валентность алюминия, исходя из общепринятой теории, должна была бы быть равна 1, так как на его внешнем подуровне находится только один свободный электрон.

Экспериментальное и теоретическое исследование неспаренных электронов у AL Экспериментальные исследования показывают, что в основном состоянии неспаренные электроны в атоме алюминия располагаются в 3p-подоболочке. Таким образом, у атому алюминия есть один неспаренный электрон, который находится в последнем p-орбитале. Теоретические исследования с помощью методов квантовой механики подтверждают экспериментальные данные. Квантово-механические расчеты показывают, что энергетический уровень неспаренного электрона находится выше уровней парных электронов. Это объясняет физические свойства атома алюминия и его химическое поведение. Неспаренный электрон в атоме алюминия делает его активным в химических реакциях и дает возможность образования различных соединений. Он может участвовать в обменных реакциях, создавать сильные связи с другими атомами и образовывать ионные соединения с другими элементами, а также образовывать координационные соединения в комплексных соединениях. Значение наличия неспаренных электронов у AL в различных отраслях науки и промышленности В физике и химии алюминий с неспаренными электронами используется для проведения различных исследований, включая электронную спектроскопию и рентгеновскую дифракцию. Эти методы позволяют изучать структуру и свойства различных веществ, а наличие неспаренных электронов в алюминии позволяет получать более точные и надежные данные. В электротехнике алюминий с неспаренными электронами играет важную роль. Он используется в производстве проводов, кабелей и разъемов благодаря своей высокой проводимости. Неспаренные электроны улучшают электрические свойства материала и увеличивают его эффективность. Алюминий с неспаренными электронами также находит применение в промышленности. Он используется в авиационной и автомобильной промышленности для производства конструкционных материалов благодаря своей легкости и прочности. Неспаренные электроны придают алюминию дополнительные механические свойства, делая его идеальным материалом для создания легких, но прочных деталей и компонентов. В медицине алюминий с неспаренными электронами играет важную роль.

Химия ЕГЭ разбор 1 задания ( Количество неспаренных электронов на внешнем слое)

Поэтому на электронно-графических формулах атомов серы и кислорода на их, соответственно, 3p- и 2p-подуровнях два электрона спарены, адва нет — именно в этом случае количество неспаренных электронов оказывается максимально возможным. Это как раз и показывает, что данные неспаренные электроны находятся в одном и том же спиновом состоянии. Внешние и валентные электроны Среди всех энергетических уровней, полностью или частично заполненых электронами, химиков едва ли не больше всего интересует тот, который обладает самой большой энергией и, соответственно, наибольшим номером. Такой энергетический уровень называют внешним. Именно электроны, располагающиеся на внешнем энергетическом уровне, как правило, могут принимать участие в образовании химических связей. Внешними в электронных оболочках атомов всегда являются s- и p-электроны. Кроме того, в образовании химических связей у атомов могут быть задействованы и d-электроны «предвнешнего» энергетического уровня. Это характерно для элементов побочных подгрупп. Все электроны, которые могут принимать участие в образовании химических связей — и s-электроны внешнего уровня, и p-электроны внешнего уровня, и d-электроны предвнешнего уровня — называют валентными электронами. Давайте теперь взглянем на электронно-графическую формулу атома хрома. Этот элемент как раз располагается в побочной подгруппе шестой группы.

Но, кроме того, валентными в атоме хрома являются и те пять электронов которые занимают орбитали предвнешнего 3d-подуровня. Всего валентных электронов у атома хрома, таким образом, оказывается шесть. Обратите внимание на то, как именно распределены шесть d-электронов атома хрома по орбиталям в пределах подуровня — в полном соответствии с правилом Гунда: все они неспаренные и находятся в одном и том же спиновом состоянии. Стрелочки направлены в одну сторону. Вглядимся и увидим, что распределение электронов по этим орбиталям не соответствует той формулировке принципа наименьшей энергии, которую мы дали выше: более низколежащая 4s-орбиталь является заполненной лишь частично, в то время как куча электронов находится на лежащей выше 3d-орбитали. Дело в том, что электроны в атоме взаимодействуют не только с ядром, но и между собой. И результатом этого взаимодействия может быть как увеличение, так и уменьшение их энергии. В данном конкретном случае конфигурация с двумя электронами на 4s-подуровне и четырьмя электронами на 3d-подуровне обладает большей энергией, чем та, которая изображена на рисунке. В результате происходит, как говорят, «перескок» электрона с 4s- на 3d-подуровень. Как предсказать такой перескок?

Точнее, можно выполнить квантовомеханический расчёт. Но это колдовство, которое не под силу даже большинству профессиональных химиков. Поэтому данный случай стоит просто запомнить, как исключение.

Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь. Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4. Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе.

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон. Ответ: 25 Определите, атомы каких из элементов имеет конфигурацию внешнего электронного уровня ns 2 np 3. Ответ: 45 Определите, атомы каких из указанных в ряду элементов в основном состоянии не содержат неспаренных электронов. Химический элемент — определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой. В табл. Нулевая степень окисления элемента в его простом веществе веществах в таблице не указана. Все атомы одного элемента имеют одно и то же число протонов в ядре и число электронов в оболочке.

Атомы одного элемента могут различаться числом нейтронов в ядре, такие атомы называются изотопами. В символах 1 Н, 2 Н и 3 Н верхний индекс указывает массовое число — сумму чисел протонов и нейтронов в ядре. Другие примеры: Электронную формулу атома любого химического элемента в соответствии с его расположением в Периодической системе элементов Д. Менделеева можно определить по табл. Электронная оболочка любого атома делится на энергетические уровни 1, 2, 3-й и т. Подуровни состоят из атомных орбиталей — областей пространства, где вероятно пребывание электронов. Орбитали обозначаются как 1s орбиталь 1-го уровня s-подуровня , 2s , 2р , 3s , 3р, 3d, 4s … Число орбиталей в подуровнях: Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями: 1 принцип минимума энергии Электроны заполняют орбитали, начиная с подуровня с меньшей энергией.

Один электрон на орбитали называется неспаренным, два электрона - электронной парой: 3 принцип максимальной мультиплетности правило Хунда В пределах подуровня электроны сначала заполняют все орбитали наполовину, а затем — полностью. Каждый электрон имеет свою собственную характеристику — спин условно изображается стрелкой вверх или вниз. Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы например, 3d 5 — это 5 электронов на Зd -подуровне ; вначале идут электроны 1-го уровня, затем 2-го, 3-го и т. Формулы могут быть полными и краткими, последние содержат в скобках символ соответствующего благородного газа, чем передается его формула, и, сверх того, начиная с Zn, заполненный внутренний d-подуровень. Именно они принимают участие в образовании химических связей. Примеры заданий части А 1. Название, не относящееся к изотопам водорода, — это 1 дейтерий 2.

Формула валентных подуровней атома металла — это 3. Число неспаренных электронов в основном состоянии атома железа равно 4. В возбужденном состоянии атома алюминия число неспаренных электронов равно 5. Электронная формула 3d 9 4s 0 отвечает катиону 6. Электронная формула аниона Э 2- 3s 2 3p 6 отвечает элементу 7. Задания 9—11, 17—19, 22—26 считаются выполненными верно, если правильно указана последовательность цифр.

В соответствии с приведенными формулами определяем внешний энергетический уровень и количество электронов на нем для каждого элемента: 1 Cu — четвёртый уровень — 1 электрон; 2 Mg — третий уровень — 2 электрона; 3 Cl — третий уровень — 7 электронов; 4 Al — третий уровень — 3 электрона; 5 Li — второй уровень — 1 электрон. Таким образом, на внешнем энергетическом уровне 1 электрон имеют атомы меди и лития. Ответ: 15 Определите, атомы каких из указанных в ряду элементов 1 Na; 2 N; 3 F; 4 Cu; 5 Be в основном состоянии содержат во внешнем слое одинаковое число электронов.

Основное состояние AL: свойства и электронная конфигурация В основном состоянии атом алюминия имеет полную внешнюю электронную оболочку, состоящую из трех электронов. Элементарная ячейка алюминия обычно имеет кубическую структуру, называемую алюминием, при которой каждый атом окружен восемью ближайшими соседями. Алюминий обладает рядом химических и физических свойств, которые делают его весьма полезным и широко используемым в промышленности. Он обладает низким уровнем плотности, хорошей теплопроводностью и электропроводностью. Алюминий также химически инертен к кислотам, но реагирует с щелочами. Экспериментальное и теоретическое исследование неспаренных электронов у AL Экспериментальные исследования показывают, что в основном состоянии неспаренные электроны в атоме алюминия располагаются в 3p-подоболочке. Таким образом, у атому алюминия есть один неспаренный электрон, который находится в последнем p-орбитале. Теоретические исследования с помощью методов квантовой механики подтверждают экспериментальные данные. Квантово-механические расчеты показывают, что энергетический уровень неспаренного электрона находится выше уровней парных электронов. Это объясняет физические свойства атома алюминия и его химическое поведение. Неспаренный электрон в атоме алюминия делает его активным в химических реакциях и дает возможность образования различных соединений. Он может участвовать в обменных реакциях, создавать сильные связи с другими атомами и образовывать ионные соединения с другими элементами, а также образовывать координационные соединения в комплексных соединениях. Значение наличия неспаренных электронов у AL в различных отраслях науки и промышленности В физике и химии алюминий с неспаренными электронами используется для проведения различных исследований, включая электронную спектроскопию и рентгеновскую дифракцию. Эти методы позволяют изучать структуру и свойства различных веществ, а наличие неспаренных электронов в алюминии позволяет получать более точные и надежные данные. В электротехнике алюминий с неспаренными электронами играет важную роль. Он используется в производстве проводов, кабелей и разъемов благодаря своей высокой проводимости.

Сколько неспаренных электронов у алюминия. Неспаренный электрон

Задания 1. Электронная конфигурация атомов химических элементов. В возбужденном состоянии они содержат три неспаренных электрона, которые, находясь в sp2-гибридизации, участвуют в образовании трех ковалентных связей.
Разбор задания №1 ЕГЭ по химии | Атом алюминия включает 13 электронов.
Амфотерные металлы: цинк и алюминий Сколько валентных электронов содержит ион алюминия (Al 3+)?
Al: количество неспаренных электронов в основном состоянии Количество протонов равно количеству электронов и равно номеру атома в периодической таблице.
Разбор задания №1 ЕГЭ по химии | Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и. От нашего клиента с логином ixjIhJf на электронную почту пришел вопрос: "Напишите электронную формулу алюминия.

Похожие новости:

Оцените статью
Добавить комментарий